Extendability of Linear Codes over \mathbb{F}_q

Tatsuya Maruta

Department of Mathematics and Information Sciences Osaka Prefecture University

Overview

Known extension theorems and recent results are surveyed.

A geometric method to investigate the (l, 1)-extendability of $[n, k, d]_q$ codes with gcd(d, q) = 1 is presented.

Contents

- 1. Linear codes over \mathbb{F}_q
- 2. (l, s)-extendability of linear codes
- 3. Extension theorems
- 4. Geometric approach

1. Linear codes over \mathbb{F}_q

 $\mathbb{F}_q^n = \{(a_1, a_2, ..., a_n) \mid a_1, ..., a_n \in \mathbb{F}_q\}.$ An $[n, k, d]_q$ code \mathcal{C} means a k-dimensional subspace of \mathbb{F}_q^n with minimum distance d, $d = \min\{wt(a) \mid wt(a) \neq 0, a \in \mathcal{C}\}.$

We only consider non-degenerate codes (i.e. $\nexists i$; $c_i = 0$ for all $c = (c_1, ..., c_n) \in C$). The weight distribution of C is the list of numbers $A_i = |\{c \in C | wt(c) = i\}|.$

The weight distribution with

$$(A_0, A_d, ..., A_i, ...) = (1, \alpha, ..., w, ...)$$

is also expressed as

$$0^1 d^{\alpha} \cdots i^w \cdots$$
.

A linear code \mathcal{C} over \mathbb{F}_q is *w*-weight (mod *q*) if

$$\exists W = \{i_1, \cdots, i_w\} \subset \mathbb{Z}_q = \{0, 1, \cdots, q-1\}$$
s.t.

 $A_i > 0 \implies i \equiv i_j \pmod{q}$ for some $i_j \in W$

Ex. The Golay $[11, 6, 5]_3$ code with a generator matrix

has weight distribution $0^{1}5^{132}6^{132}8^{330}9^{110}11^{24}$, which is 2-weight (mod 3).

Ex. There exists a $[601, 5, 479]_5$ code with weight distribution $0^{1}479^{1040}480^{520}481^{1000}484^{420}485^{100}489^{40}600^{4}$ which is 3-weight (mod 5) since $A_i > 0 \implies i \equiv -1, 0, 1 \pmod{5}$.

2. (l, s)-extendability of linear codes

For an $[n, k, d]_q$ code C with a generator matrix G, C is (l, s)-extendable if $[G, h_1, \dots, h_l]$ generates an $[n+l, k, d+s]_q$ code C' for some column vectors h_i , $h_i^{\mathsf{T}} \in \mathbb{F}_q^k$. C' is an (l, s)-extension of C.

A (1,1)-extendable code is simply called extendable. **Thm 1.** Every binary code with odd minimum distance is extendable.

Note. For an $[n, k, d]_q$ code C, there is another type of extension called extension up to dimension, which is to find an $[n+l, k+s, d]_q$ code from C. Here, we only consider extension up to length to find an $[n+l, k, d+s]_q$ code from C.

As for the (l, s)-extendability, the next is well known.

Thm 2 (Construction X).

It is not easy to find a suitable subcode C_0 of a given $[n, k, d]_q$ code C to apply Thm 2.

Problem. Find easily checkable conditions to see whether a given $[n, k, d]_q$ code is (l, 1)-extendable or not.

Theorems giving answers to this problem are called extension theorems.

The condition "d is odd" for binary codes will be replaced by "gcd(d,q) = 1" for q-ary linear codes.

But this is not sufficient for the extendability of $\mathcal{C}.$

We assume $k \geq 3$ to avoid the trivial cases.

We also assume gcd(d,q) = 1.

3. Extension theorems

Thm 3 (Hill & Lizak 1995). Let C be an $[n, k, d]_q$ code with gcd(d, q)=1s.t. $i \equiv 0$ or $d \pmod{q}$ for $\forall i$ with $A_i > 0$. Then C is extendable.

Cor.

$$A_i > 0 \implies i \equiv 0 \text{ or } -1 \pmod{q}$$

For 3-weight (mod q) codes, the following is known:

Thm 4 (Maruta 2004).

Let C be an $[n, k, d]_q$ code with odd $q \ge 5$, $d \equiv -2 \pmod{q}$. Then C is extendable if $A_i > 0 \implies i \equiv 0, -1, -2 \pmod{q}$

Non-existence of $[205, 4, 163]_5$, $[105, 4, 83]_5$ was proved by Landjev et al.(2003) using Thm 4. We define the diversity of C as the pair (Φ_0, Φ_1) with

$$\Phi_0 = \frac{1}{q-1} \sum_{q|i,i>0} A_i, \quad \Phi_1 = \frac{1}{q-1} \sum_{i \neq 0,d \pmod{q}} A_i.$$

Note.

C is extendable if $\Phi_1 = 0$ by Thm 3.

Thm 5 (Landjev & Rousseva, 2006). Every $[n, k, d]_q$ code with gcd(d, q) = 1 is extendable if

$$\Phi_1 < q^{k-3}(s(q) - q - 1)/(q - 1)$$

where s(q) is the smallest size of a nontrivial blocking set in PG(2,q).

Cor. Every $[n, k, d]_3$ code with $d \equiv 1$ or 2 (mod 3) is extendable if $\Phi_1 < 3^{k-3}$.

Thm 6 (Maruta, 2001).

 \mathcal{C} : $[n, k, d]_3$ code with diversity (Φ_0, Φ_1) , gcd(3,d) = 1, k > 3. Then C is extendable if one of the following conditions holds: (1) $\Phi_0 = \theta_{k-3}$ (2) $\Phi_1 = 0$ (3) $\Phi_0 + \Phi_1 < \theta_{k-2} + 3^{k-2}$ (4) $\Phi_0 + \Phi_1 \ge \theta_{k-2} + 2 \cdot 3^{k-2}$ (5) $2\Phi_0 + \Phi_1 < 2\theta_{k-2}$ where $\theta_i = (3^{j+1} - 1)/2$.

All possible diversities of $[n, k, d]_3$ codes are found by Maruta & Okamoto(2007), and the condition $\Phi_1 < 3^{k-3}$ in Cor of Thm 5 can be improved as follows.

Thm 7. An $[n, k, d]_3$ code with diversity (Φ_0, Φ_1) , gcd(3, d) = 1, $k \ge 3$, is extendable if $\Phi_1 < 3^{k-2}$ or $\Phi_1 > \theta_{k-2} + \theta_{k-4} + 1$.

Thm 6 (Maruta, 2001).

 \mathcal{C} : $[n, k, d]_3$ code with diversity (Φ_0, Φ_1) , gcd(3,d) = 1, k > 3. Then C is extendable if one of the following conditions holds: (1) $\Phi_0 = \theta_{k-3}$ (2) $\Phi_1 = 0$ (3) $\Phi_0 + \Phi_1 < \theta_{k-2} + 3^{k-2}$ (4) $\Phi_0 + \Phi_1 \ge \theta_{k-2} + 2 \cdot 3^{k-2}$ (5) $2\Phi_0 + \Phi_1 < 2\theta_{k-2}$ where $\theta_i = (3^{j+1} - 1)/2$.

The condition (3) of Thm 6 is generalized for prime q as follows.

Thm 8 (Maruta, 2003). $C: [n, k, d]_q$ code with gcd(d, q) = 1, q prime. Then C is extendable if

$$\Phi_0 + \Phi_1 < \theta_{k-2} + q^{k-2}.$$

Similar results are known for non-prime q, see Theorems 3.7 and 3.8 in the Proceedings.

Thm 6 (Maruta, 2001).

 \mathcal{C} : $[n, k, d]_3$ code with diversity (Φ_0, Φ_1) , gcd(3,d) = 1, k > 3. Then C is extendable if one of the following conditions holds: (1) $\Phi_0 = \theta_{k-3}$ (2) $\Phi_1 = 0$ (3) $\Phi_0 + \Phi_1 < \theta_{k-2} + 3^{k-2}$ (4) $\Phi_0 + \Phi_1 \ge \theta_{k-2} + 2 \cdot 3^{k-2}$ (5) $2\Phi_0 + \Phi_1 < 2\theta_{k-2}$ where $\theta_i = (3^{j+1} - 1)/2$.

Thm 9 (Maruta & Okamoto). \mathcal{C} : $[n, k, d]_q$ code with diversity (Φ_0, Φ_1) , $k \geq 3$, $d \equiv -1 \pmod{q}$, q odd, s.t. $A_i > 0 \implies i \equiv 0 \text{ or } \pm 1 \pmod{q}$. Then C is extendable if one of (1)-(4) holds: (1) $\Phi_0 = \theta_{k-3}$, (2) $\Phi_1 = 0$ (3) $\Phi_0 + \Phi_1 > \theta_{k-2} + \alpha q^{k-2}$ (4) $\alpha \Phi_0 + \Phi_1 < \alpha \theta_{k-2}$ where $\theta_i = (q^{j+1} - 1)/(q - 1)$, $\alpha = \theta_1/2$.

Thm 10 (Maruta & Okamoto). \mathcal{C} : $[n, k, d]_q$ code with diversity (Φ_0, Φ_1) , $k \geq 3$, $d \equiv -1 \pmod{q}$, q odd, s.t. $A_i > 0 \implies i \equiv 0 \text{ or } \pm 1 \pmod{q}$. Then C is not extendable if (Φ_0, Φ_1) satisfies none of the conditions of Thm 9 and if

$$\sum_{d < i \equiv d \pmod{q}} A_i < \frac{(q-1)^2 q^{\kappa-3}}{2}$$

Thm 11 (Maruta & Okamoto). $C: [n, k, d]_q$ code with q even, $k \ge 3$, $d \equiv -1 \pmod{q}$, s.t. $A_i > 0 \implies i \equiv 0 \text{ or } \pm 1 \pmod{q}$.

Then \mathcal{C} is extendable.

Extension theorems can be applied to find new codes from old ones or to prove the nonexistence of codes with certain parameters. For example, we demonstrate the nonexistence of $[245, 5, 183]_4$ codes. For a putative $[245,5,183]_4$ code $\mathcal{C}_1,$ considering the residual codes yields that

 $A_i > 0 \implies i \in \{0, 183, 184, 196, 228, 244, 245\}$ i.e. $A_i > 0 \implies i \equiv 0 \text{ or } \pm 1 \pmod{4}$.

Applying Thm 11, C_1 is extendable, which contradicts that a [246, 5, 184]₄ code does not exist.

Let C_2 be a $[q + 1, 3, q - 1]_q$ code, which is MDS and has the unique weight distribution

$$0^{1}(q-1)^{(q+1)q(q-1)/2}q^{q^{2}-1}(q+1)^{q(q-1)^{2}/2}.$$

So, $A_i > 0 \Rightarrow i \equiv 0$ or $\pm 1 \pmod{q}$, and its diversity $(\theta_1, q(q-1)/2)$ satisfies none of the conditions of Thm 9. So, by Thms 10, 11, C_2 is not extendable when q is odd, but C_2 is extendable when q is even. Recent results for another type of 3-weight (mod q) codes by Cheon & Maruta:

Thm 12. Let C be an $[n, k, d]_q$ code with $q \ge 4$, $d \equiv -1 \pmod{q}$ s.t. $A_i > 0 \implies i \equiv 0 \text{ or } -1 \text{ or } -2 \pmod{q}$. Then C is extendable unless q is odd and $(\Phi_0, \Phi_1) = (\binom{q}{2}q^{k-3} + \theta_{k-3}, \binom{q}{2}q^{k-3})$.

5. Geometric approach

 \mathcal{C} : $[n, k, d]_q$ code, $k \geq 3$ $G = [g_1, \cdots, g_k]^{\mathsf{T}}$: a generator matrix of \mathcal{C} $\Sigma := PG(k-1,q)$: the projective space of dimension k-1 over \mathbb{F}_q For $P = P(p_1, \ldots, p_k) \in \Sigma$ we define the weight of P with respect to C, denoted by $w_{\mathcal{C}}(P)$, as $w_{\mathcal{C}}(P) = wt(p_1g_1 + \dots + p_kg_k).$

A hyperplane
$$H$$
 of Σ is defined by a non-zero
vector $h = (h_0, \dots, h_{k-1}) \in \mathbb{F}_q^k$ as
 $H = \{P = P(p_0, \dots, p_{k-1}) \in \Sigma \mid h_0 p_0 + \dots + h_{k-1} p_{k-1} = 0\}.$

h is called a defining vector of H.

Let $F_d = \{P \in \Sigma \mid w_{\mathcal{C}}(P) = d\}.$

Lemma 13. C is extendable \Leftrightarrow there exists a hyperplane H of Σ s.t. $F_d \cap H = \emptyset$. Moreover, [G, h] generates an extension of C, where $h^{\top} \in \mathbb{F}_q^k$ is a defining vector of H. **Lemma 13.** C is extendable \Leftrightarrow there exists a hyperplane H of Σ s.t. $F_d \cap H = \emptyset$. Moreover, [G, h] generates an extension of C, where $h^{\top} \in \mathbb{F}_q^k$ is a defining vector of H. **Proof.** C is extendable

 $\Leftrightarrow \exists h = (h_0, \dots, h_{k-1}) \in \mathbb{F}_q^k \text{ s.t. } [G, h^{\mathsf{T}}] \text{ generates an } [n+1, k, d+1]_q \text{ code}$ $\Leftrightarrow \sum_{i=0}^{k-1} h_i p_i \neq 0 \text{ for } \forall P = P(p_0, \dots, p_{k-1}) \in F_d$ $\Leftrightarrow \exists H: \text{ a hyperplane with a defining vector } h$ s.t. $F_d \cap H = \emptyset$. The above lemma can be easily generalized to the (l, 1)-extendability.

Thm 14. C is (l, 1)-extendable \Leftrightarrow there exist l hyperplanes H_1, \ldots, H_l of Σ s.t. $F_d \cap H_1 \cap \cdots \cap H_l = \emptyset$. $\Leftrightarrow \exists (k-1-l)$ -flat Π with $F_d \cap \Pi = \emptyset$.

E.g. C is (2,1)-extendable $\Leftrightarrow \exists (k-3)$ -flat Π with $F_d \cap \Pi = \emptyset$. Now, let

$$F_0 = \{P \in \Sigma \mid w_{\mathcal{C}}(P) \equiv 0 \pmod{q}\},$$

$$F_1 = \{P \in \Sigma \mid w_{\mathcal{C}}(P) \not\equiv 0, d \pmod{q}\},$$

$$F = F_0 \cup F_1.$$

Note. $(\Phi_0, \Phi_1) = (|F_0|, |F_1|).$

Lemma 15. F forms a blocking set with respect to lines in Σ if gcd(d,q) = 1.

Note. If C is divisible by q, then $F_0 = \Sigma$. There is no way to deal with theoretically for such codes except computer search, e.g. Q-extension. So, we assume gcd(d,q) = 1.

Lemma 16. C is (l, 1)-extendable if $\exists (k-1-l)$ -flat Π in Σ with $\Pi \subset F$.

Most of the known extension theorems can be proved geometrically using this lemma. **Problem 2.** Find a new extension theorem for 4-weight (mod q) codes.

Question. Is any $[n, k, d]_5$ code with $d \equiv -3$ (mod 5) satisfying $A_i > 0 \implies i \equiv 0, -1, -2, -3 \pmod{5}$ extendable? **Answer.** Not always. A $[16, 3, 12]_5$ code C with generator matrix

has weight distribution $0^1 12^{60} 13^{40} 15^{24}$. But C is not extendable.

Question.

Let C be an $[n, k, d]_q$ code with $q \ge 7$, $d \equiv -3$ (mod q), gcd(d, q) = 1, satisfying $A_i > 0 \implies i \equiv 0, -1, -2, -3 \pmod{q}$. Then, is C always extendable?

Question.

Let C be an $[n, k, d]_q$ code with $q \ge 7$, $d \equiv -3$ (mod q), gcd(d, q) = 1, satisfying $A_i > 0 \implies i \equiv 0, -1, -2, -3 \pmod{q}$. Then, is C always extendable?

The answer is unknown. Let's try!

Thank you for your attention!

[q = 4]C: an $[n, k, d]_4$ code with k > 3, d odd. we define the diversity of ${\mathcal C}$ as the 3-tuple (Φ_0, Φ_1, Φ_2) with $\Phi_0 = \frac{1}{3} \sum_{4|i,i>0} A_i$, $\Phi_j = \frac{1}{3} \sum_{i \equiv -j \pmod{4}} A_i \text{ for } j = 1,2$ when $d \equiv 1 \pmod{4}$, $\Phi_j = \frac{1}{3} \sum_{i \equiv j \pmod{4}} A_i \quad \text{for } j = 1, 2$ when $d \equiv 3 \pmod{4}$.

Thm 17. (Simonis 2000, Maruta et al.) An $[n, k, d]_4$ code C with div. (Φ_0, Φ_1, Φ_2) , d odd, is extendable if one of the following conditions holds:

(1)
$$\Phi_0 = \theta_{k-4}$$

(2) $\Phi_1 = 0$
(3) $\Phi_2 = 0$
(4) $\Phi_0 + \Phi_2 < \theta_{k-2} + 4^{k-2}$
(5) $\Phi_0 + \Phi_2 = \theta_{k-2} + 2 \times 4^{k-2}$.