Extendability of Linear Codes over \mathbb{F}_{q}

Tatsuya Maruta

Department of Mathematics
and Information Sciences
Osaka Prefecture University

Overview

on Known extension theorems and recent results are surveyed.
\& A geometric method to investigate the ($l, 1$)-extendability of $[n, k, d]_{q}$ codes with $\operatorname{gcd}(d, q)=1$ is presented.

Contents

1. Linear codes over \mathbb{F}_{q}
2. (l, s)-extendability of linear codes
3. Extension theorems
4. Geometric approach

1. Linear codes over \mathbb{F}_{q}

$\mathbb{F}_{q}^{n}=\left\{\left(a_{1}, a_{2}, \ldots, a_{n}\right) \mid a_{1}, \ldots, a_{n} \in \mathbb{F}_{q}\right\}$.
An $[n, k, d]_{q}$ code \mathcal{C} means a k-dimensional subspace of \mathbb{F}_{q}^{n} with minimum distance d,

$$
d=\min \{w t(a) \mid w t(a) \neq 0, a \in \mathcal{C}\}
$$

We only consider non-degenerate codes
(i.e. $\nexists i ; c_{i}=0$ for all $c=\left(c_{1}, \ldots, c_{n}\right) \in \mathcal{C}$).

The weight distribution of \mathcal{C} is the list of numbers $A_{i}=|\{c \in \mathcal{C} \mid w t(c)=i\}|$.

The weight distribution with

$$
\left(A_{0}, A_{d}, \ldots, A_{i}, \ldots\right)=(1, \alpha, \ldots, w, \ldots)
$$

is also expressed as

$$
0^{1} d^{\alpha} \cdots i^{w} \cdots
$$

A linear code \mathcal{C} over \mathbb{F}_{q} is w-weight $(\bmod q)$
if
${ }^{\exists} W=\left\{i_{1}, \cdots, i_{w}\right\} \subset \mathbb{Z}_{q}=\{0,1, \cdots, q-1\}$
s.t.
$A_{i}>0 \Rightarrow i \equiv i_{j}(\bmod q)$ for some $i_{j} \in W$

Ex. The Golay $[11,6,5]_{3}$ code with a generator matrix

$$
G_{1}=\left[\begin{array}{lllllllllll}
1 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 2 & 2 & 1 \\
0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 2 & 2 \\
0 & 0 & 0 & 1 & 0 & 0 & 2 & 1 & 0 & 1 & 2 \\
0 & 0 & 0 & 0 & 1 & 0 & 2 & 2 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 & 2 & 2 & 1 & 0
\end{array}\right]
$$

has weight distribution $0^{1} 5^{132} \sigma^{132} 8^{330} 9^{110} 11^{24}$, which is 2 -weight $(\bmod 3)$.

Ex. There exists a $[601,5,479]_{5}$ code with weight distribution

$$
0^{1} 479^{1040} 480^{520} 481^{1000} 484^{420} 485^{100} 489^{40} 600^{4}
$$

which is 3-weight (mod 5) since

$$
A_{i}>0 \Rightarrow i \equiv-1,0,1(\bmod 5)
$$

2. (l, s)-extendability of linear codes

For an $[n, k, d]_{q}$ code \mathcal{C} with a generator matrix G, \mathcal{C} is (l, s)-extendable if $\left[G, h_{1}, \cdots, h_{l}\right]$ generates an $[n+l, k, d+s]_{q}$ code \mathcal{C}^{\prime} for some column vectors $h_{i}, h_{i}^{\top} \in \mathbb{F}_{q}^{k}$. \mathcal{C}^{\prime} is an (l, s)-extension of \mathcal{C}.

A (1,1)-extendable code is simply called extendable.

Thm 1. Every binary code with odd minimum distance is extendable.

Note. For an $[n, k, d]_{q}$ code \mathcal{C}, there is another type of extension called extension up to dimension, which is to find an $[n+l, k+s, d]_{q}$ code from \mathcal{C}. Here, we only consider extension up to length to find an $[n+l, k, d+s]_{q}$ code from \mathcal{C}.

As for the (l, s)-extendability, the next is well known.

Thm 2 (Construction X).
$\mathcal{C}:[n, k, d]_{q}$ code, $\mathcal{C}_{0}:\left[n, k_{0}, d_{0}\right]_{q}$ code
$\mathcal{C}_{0} \subset \mathcal{C}, d<d_{0}$,
$\mathcal{C}^{\prime}: \quad\left[l, k-k_{0}, d^{\prime}\right]_{q}$ code, $\quad s=\min \left\{d^{\prime}, d_{0}-d\right\}$
$\Rightarrow \mathcal{C}$ is (l, s)-extendable.

It is not easy to find a suitable subcode \mathcal{C}_{0} of a given $[n, k, d]_{q}$ code \mathcal{C} to apply Thm 2.

Problem. Find easily checkable conditions to see whether a given $[n, k, d]_{q}$ code is ($l, 1$)extendable or not.

Theorems giving answers to this problem are called extension theorems.

The condition " d is odd" for binary codes will be replaced by " $\operatorname{gcd}(d, q)=1$ " for q-ary linear codes.

But this is not sufficient for the extendability of \mathcal{C}.

We assume $k \geq 3$ to avoid the trivial cases. We also assume $\operatorname{gcd}(d, q)=1$.

3. Extension theorems

Thm 3 (Hill \& Lizak 1995).
Let \mathcal{C} be an $[n, k, d]_{q}$ code with $\operatorname{gcd}(d, q)=1$
s.t. $i \equiv 0$ or $d(\bmod q)$ for ${ }^{\forall} i$ with $A_{i}>0$.

Then \mathcal{C} is extendable.
Cor.
\mathcal{C} : an $[n, k, d]_{q}$ code with $d \equiv-1(\bmod q)$.
Then \mathcal{C} is extendable if

$$
A_{i}>0 \Rightarrow i \equiv 0 \text { or }-1(\bmod q)
$$

For 3-weight $(\bmod q)$ codes, the following is known:

Thm 4 (Maruta 2004).
Let \mathcal{C} be an $[n, k, d]_{q}$ code with odd $q \geq 5$, $d \equiv-2(\bmod q)$. Then \mathcal{C} is extendable if

$$
A_{i}>0 \Rightarrow i \equiv 0,-1,-2(\bmod q)
$$

Non-existence of $[205,4,163]_{5},[105,4,83]_{5}$ was proved by Landjev et al.(2003) using Thm 4.

We define the diversity of \mathcal{C} as the pair $\left(\Phi_{0}, \Phi_{1}\right)$ with

$$
\Phi_{0}=\frac{1}{q-1} \sum_{q \mid i, i>0} A_{i}, \quad \Phi_{1}=\frac{1}{q-1} \sum_{i \neq 0, d} \sum_{(\bmod q)} A_{i} .
$$

Note.
\mathcal{C} is extendable if $\Phi_{1}=0$ by Thm 3.

Thm 5 (Landjev \& Rousseva, 2006).
Every $[n, k, d]_{q}$ code with $\operatorname{gcd}(d, q)=1$ is extendable if

$$
\Phi_{1}<q^{k-3}(s(q)-q-1) /(q-1)
$$

where $s(q)$ is the smallest size of a nontrivial blocking set in $\mathrm{PG}(2, q)$.

Cor. Every $[n, k, d]_{3}$ code with $d \equiv 1$ or 2 $(\bmod 3)$ is extendable if $\Phi_{1}<3^{k-3}$.

Thm 6 (Maruta, 2001).
$\mathcal{C}:[n, k, d]_{3}$ code with diversity $\left(\Phi_{0}, \Phi_{1}\right)$, $\operatorname{gcd}(3, d)=1, k \geq 3$. Then \mathcal{C} is extendable if one of the following conditions holds:
(1) $\Phi_{0}=\theta_{k-3}$
(2) $\Phi_{1}=0$
(3) $\Phi_{0}+\Phi_{1}<\theta_{k-2}+3^{k-2}$
(4) $\Phi_{0}+\Phi_{1} \geq \theta_{k-2}+2 \cdot 3^{k-2}$
(5) $2 \Phi_{0}+\Phi_{1} \leq 2 \theta_{k-2}$
where $\theta_{j}=\left(3^{j+1}-1\right) / 2$.

All possible diversities of $[n, k, d]_{3}$ codes are found by Maruta \& Okamoto(2007), and the condition $\Phi_{1}<3^{k-3}$ in Cor of Thm 5 can be improved as follows.
Thm 7. An $[n, k, d]_{3}$ code with diversity ($\left.\Phi_{0}, \Phi_{1}\right), \operatorname{gcd}(3, d)=1, k \geq 3$, is extendable if $\Phi_{1}<3^{k-2}$ or $\Phi_{1}>\theta_{k-2}+\theta_{k-4}+1$.

Thm 6 (Maruta, 2001).
$\mathcal{C}:[n, k, d]_{3}$ code with diversity $\left(\Phi_{0}, \Phi_{1}\right)$, $\operatorname{gcd}(3, d)=1, k \geq 3$. Then \mathcal{C} is extendable if one of the following conditions holds:
(1) $\Phi_{0}=\theta_{k-3}$
(2) $\Phi_{1}=0$
(3) $\Phi_{0}+\Phi_{1}<\theta_{k-2}+3^{k-2}$
(4) $\Phi_{0}+\Phi_{1} \geq \theta_{k-2}+2 \cdot 3^{k-2}$
(5) $2 \Phi_{0}+\Phi_{1} \leq 2 \theta_{k-2}$
where $\theta_{j}=\left(3^{j+1}-1\right) / 2$.

The condition (3) of Thm 6 is generalized for prime q as follows.

Thm 8 (Maruta, 2003).
$\mathcal{C}:[n, k, d]_{q}$ code with $\operatorname{gcd}(d, q)=1, q$ prime.
Then \mathcal{C} is extendable if

$$
\Phi_{0}+\Phi_{1}<\theta_{k-2}+q^{k-2}
$$

Similar results are known for non-prime q, see Theorems 3.7 and 3.8 in the Proceedings.

Thm 6 (Maruta, 2001).
$\mathcal{C}:[n, k, d]_{3}$ code with diversity $\left(\Phi_{0}, \Phi_{1}\right)$, $\operatorname{gcd}(3, d)=1, k \geq 3$. Then \mathcal{C} is extendable if one of the following conditions holds:
(1) $\Phi_{0}=\theta_{k-3}$
(2) $\Phi_{1}=0$
(3) $\Phi_{0}+\Phi_{1}<\theta_{k-2}+3^{k-2}$
(4) $\Phi_{0}+\Phi_{1} \geq \theta_{k-2}+2 \cdot 3^{k-2}$
(5) $2 \Phi_{0}+\Phi_{1} \leq 2 \theta_{k-2}$
where $\theta_{j}=\left(3^{j+1}-1\right) / 2$.

Thm 9 (Maruta \& Okamoto).
$\mathcal{C}:[n, k, d]_{q}$ code with diversity $\left(\Phi_{0}, \Phi_{1}\right)$, $k \geq 3, d \equiv-1(\bmod q), q$ odd, s.t.

$$
A_{i}>0 \Rightarrow i \equiv 0 \text { or } \pm 1(\bmod q) .
$$

Then \mathcal{C} is extendable if one of (1)-(4) holds:
(1) $\Phi_{0}=\theta_{k-3}$,
(2) $\Phi_{1}=0$
(3) $\Phi_{0}+\Phi_{1} \geq \theta_{k-2}+\alpha q^{k-2}$
(4) $\alpha \Phi_{0}+\Phi_{1} \leq \alpha \theta_{k-2}$
where $\theta_{j}=\left(q^{j+1}-1\right) /(q-1), \alpha=\theta_{1} / 2$.

Thm 10 (Maruta \& Okamoto).
$\mathcal{C}:[n, k, d]_{q}$ code with diversity $\left(\Phi_{0}, \Phi_{1}\right)$, $k \geq 3, d \equiv-1(\bmod q), q$ odd, s.t.

$$
A_{i}>0 \Rightarrow i \equiv 0 \text { or } \pm 1(\bmod q)
$$

Then \mathcal{C} is not extendable if $\left(\Phi_{0}, \Phi_{1}\right)$ satisfies none of the conditions of Thm 9 and if

$$
\sum_{d<i \equiv d} \sum_{(\bmod q)} A_{i}<\frac{(q-1)^{2} q^{k-3}}{2} .
$$

Thm 11 (Maruta \& Okamoto).
$\mathcal{C}:[n, k, d]_{q}$ code with q even, $k \geq 3$,
$d \equiv-1(\bmod q)$, s.t.

$$
A_{i}>0 \Rightarrow i \equiv 0 \text { or } \pm 1(\bmod q)
$$

Then \mathcal{C} is extendable.

Extension theorems can be applied to find new codes from old ones or to prove the nonexistence of codes with certain parameters. For example, we demonstrate the nonexistence of $[245,5,183]_{4}$ codes.

For a putative $[245,5,183]_{4}$ code \mathcal{C}_{1}, considering the residual codes yields that
$A_{i}>0 \Rightarrow i \in\{0,183,184,196,228,244,245\}$
i.e. $A_{i}>0 \Rightarrow i \equiv 0$ or $\pm 1(\bmod 4)$.

Applying Thm 11, \mathcal{C}_{1} is extendable, which contradicts that a $[246,5,184]_{4}$ code does not exist.

Let \mathcal{C}_{2} be a $[q+1,3, q-1]_{q}$ code, which is
MDS and has the unique weight distribution

$$
0^{1}(q-1)^{(q+1) q(q-1) / 2} q^{q^{2}-1}(q+1)^{q(q-1)^{2} / 2} .
$$

So, $A_{i}>0 \Rightarrow i \equiv 0$ or $\pm 1(\bmod q)$, and its diversity $\left(\theta_{1}, q(q-1) / 2\right)$ satisfies none of the conditions of Thm 9. So, by Thms 10, 11,
\mathcal{C}_{2} is not extendable when q is odd, but
\mathcal{C}_{2} is extendable when q is even.

Recent results for another type of 3-weight $(\bmod q)$ codes by Cheon \& Maruta:

Thm 12. Let \mathcal{C} be an $[n, k, d]_{q}$ code with $q \geq 4, d \equiv-1(\bmod q)$
s.t. $A_{i}>0 \Rightarrow i \equiv 0$ or -1 or $-2(\bmod q)$.

Then \mathcal{C} is extendable unless q is odd and

$$
\left(\Phi_{0}, \Phi_{1}\right)=\left(\binom{q}{2} q^{k-3}+\theta_{k-3},\binom{q}{2} q^{k-3}\right) .
$$

5. Geometric approach

$\mathcal{C}:[n, k, d]_{q}$ code, $k \geq 3$
$G=\left[g_{1}, \cdots, g_{k}\right]^{\top}$: a generator matrix of \mathcal{C}
$\Sigma:=\mathrm{PG}(k-1, q)$: the projective space of dimension $k-1$ over \mathbb{F}_{q}
For $P=\mathbf{P}\left(p_{1}, \ldots, p_{k}\right) \in \Sigma$ we define the weight of P with respect to \mathcal{C}, denoted by $w_{\mathcal{C}}(P)$, as

$$
w_{\mathcal{C}}(P)=w t\left(p_{1} g_{1}+\cdots+p_{k} g_{k}\right)
$$

A hyperplane H of Σ is defined by a non-zero vector $h=\left(h_{0}, \ldots, h_{k-1}\right) \in \mathbb{F}_{q}^{k}$ as
$H=\left\{P=\mathbf{P}\left(p_{0}, \ldots, p_{k-1}\right) \in \Sigma \mid\right.$

$$
\left.h_{0} p_{0}+\cdots+h_{k-1} p_{k-1}=0\right\} .
$$

h is called a defining vector of H.

Let $F_{d}=\left\{P \in \Sigma \mid w_{\mathcal{C}}(P)=d\right\}$.

Lemma 13. \mathcal{C} is extendable \Leftrightarrow there exists a hyperplane H of Σ s.t. $F_{d} \cap H=\emptyset$.
Moreover, $[G, h]$ generates an extension of \mathcal{C}, where $h^{\top} \in \mathbb{F}_{q}^{k}$ is a defining vector of H.

Lemma 13. \mathcal{C} is extendable \Leftrightarrow there exists a hyperplane H of Σ s.t. $F_{d} \cap H=\emptyset$.

Moreover, $[G, h]$ generates an extension of \mathcal{C}, where $h^{\top} \in \mathbb{F}_{q}^{k}$ is a defining vector of H.
Proof. \mathcal{C} is extendable
$\Leftrightarrow{ }^{\exists} h=\left(h_{0}, \ldots, h_{k-1}\right) \in \mathbb{F}_{q}^{k}$ s.t. $\left[G, h^{\top}\right]$ generates an $[n+1, k, d+1]_{q}$ code
$\Leftrightarrow \Sigma_{i=0}^{k-1} h_{i} p_{i} \neq 0$ for ${ }^{\forall} P=\mathbf{P}\left(p_{0}, \ldots, p_{k-1}\right) \in F_{d}$ $\Leftrightarrow{ }^{\exists} H$: a hyperplane with a defining vector h
s.t. $F_{d} \cap H=\emptyset$.

The above lemma can be easily generalized to the ($l, 1$)-extendability.

Thm 14. \mathcal{C} is $(l, 1)$-extendable
\Leftrightarrow there exist l hyperplanes H_{1}, \ldots, H_{l} of Σ

$$
\text { s.t. } F_{d} \cap H_{1} \cap \cdots \cap H_{l}=\emptyset .
$$

$\Leftrightarrow{ }^{\exists}(k-1-l)$-flat Π with $F_{d} \cap \Pi=\emptyset$.
E.g. \mathcal{C} is $(2,1)$-extendable

$$
\Leftrightarrow{ }^{\exists}(k-3) \text {-flat } \Pi \text { with } F_{d} \cap \Pi=\emptyset .
$$

Now, let

$$
\begin{aligned}
F_{0} & =\left\{P \in \Sigma \mid w_{\mathcal{C}}(P) \equiv 0 \quad(\bmod q)\right\} \\
F_{1} & =\left\{P \in \Sigma \mid w_{\mathcal{C}}(P) \not \equiv 0, d \quad(\bmod q)\right\}, \\
F & =F_{0} \cup F_{1} .
\end{aligned}
$$

Note. $\left(\Phi_{0}, \Phi_{1}\right)=\left(\left|F_{0}\right|,\left|F_{1}\right|\right)$.

Lemma 15. F forms a blocking set with respect to lines in Σ if $\operatorname{gcd}(d, q)=1$.

Note. If \mathcal{C} is divisible by q, then $F_{0}=\Sigma$.
There is no way to deal with theoretically for such codes except computer search, e.g. Q-extension. So, we assume $\operatorname{gcd}(d, q)=1$.

Lemma 16. \mathcal{C} is ($l, 1$)-extendable if ${ }^{\exists}(k-1-l)$-flat Π in Σ with $\Pi \subset F$.

Most of the known extension theorems can be proved geometrically using this lemma.

Problem 2. Find a new extension theorem for 4-weight $(\bmod q)$ codes.

Question. Is any $[n, k, d]_{5}$ code with $d \equiv-3$ (mod 5) satisfying

$$
A_{i}>0 \Rightarrow i \equiv 0,-1,-2,-3(\bmod 5)
$$

extendable?

Answer. Not always. A $[16,3,12]_{5}$ code \mathcal{C} with generator matrix

$$
\left[\begin{array}{llllllllllllllll}
1 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 & 1 & 1 & 2 & 2 & 3 & 3 & 4 & 4 & 1 & 1 \\
0 & 0 & 1 & 1 & 3 & 4 & 0 & 4 & 3 & 4 & 1 & 3 & 0 & 1 & 1 & 2
\end{array}\right]
$$

has weight distribution $0^{1} 12^{60} 13^{40} 15^{24}$.
But \mathcal{C} is not extendable.

Question.

Let \mathcal{C} be an $[n, k, d]_{q}$ code with $q \geq 7, d \equiv-3$
$(\bmod q), \operatorname{gcd}(d, q)=1$, satisfying

$$
A_{i}>0 \Rightarrow i \equiv 0,-1,-2,-3(\bmod q)
$$

Then, is \mathcal{C} always extendable?

Question.

Let \mathcal{C} be an $[n, k, d]_{q}$ code with $q \geq 7, d \equiv-3$
$(\bmod q), \operatorname{gcd}(d, q)=1$, satisfying

$$
A_{i}>0 \Rightarrow i \equiv 0,-1,-2,-3(\bmod q)
$$

Then, is \mathcal{C} always extendable?

The answer is unknown. Let's try!

Thank you for your attention!

[$q=4$]

\mathcal{C} : an $[n, k, d]_{4}$ code with $k \geq 3, d$ odd. we define the diversity of \mathcal{C} as the 3 -tuple $\left(\Phi_{0}, \Phi_{1}, \Phi_{2}\right)$ with $\quad \Phi_{0}=\frac{1}{3} \sum_{4 \mid i, i>0} A_{i}$,

$$
\Phi_{j}=\frac{1}{3} \sum_{i \equiv-j(\bmod 4)} A_{i} \text { for } j=1,2
$$

when $d \equiv 1(\bmod 4)$,

$$
\Phi_{j}=\frac{1}{3} \sum_{i \equiv j(\bmod 4)} A_{i} \quad \text { for } j=1,2
$$

$$
\text { when } d \equiv 3(\bmod 4)
$$

Thm 17. (Simonis 2000, Maruta et al.)
An $[n, k, d]_{4}$ code \mathcal{C} with div. ($\Phi_{0}, \Phi_{1}, \Phi_{2}$), d odd, is extendable if one of the following conditions holds:
(1) $\Phi_{0}=\theta_{k-4}$
(2) $\Phi_{1}=0$
(3) $\Phi_{2}=0$
(4) $\Phi_{0}+\Phi_{2}<\theta_{k-2}+4^{k-2}$
(5) $\Phi_{0}+\Phi_{2}=\theta_{k-2}+2 \times 4^{k-2}$.

